BIPM.EM-K10.b, SIM.EM.BIPM-K10.b and SIM.EM.BIPM-K10.b.1

Key comparison BIPM.EM-K10.b

MEASURAND: DC voltage, Josephson standards, **NOMINAL VALUE:** 10 V

<table>
<thead>
<tr>
<th>Lab i</th>
<th>x_i / nV</th>
<th>u_i / nV</th>
<th>Date of measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNE</td>
<td>1.2</td>
<td>1.2</td>
<td>May 1994</td>
</tr>
<tr>
<td>PTB</td>
<td>-0.3</td>
<td>0.5</td>
<td>Jan 1998</td>
</tr>
<tr>
<td>SP</td>
<td>1.4</td>
<td>1.2</td>
<td>Jan 1998</td>
</tr>
<tr>
<td>SMU</td>
<td>14</td>
<td>11</td>
<td>May 1999</td>
</tr>
<tr>
<td>NPL</td>
<td>-1.5</td>
<td>2.2</td>
<td>Sep 2004</td>
</tr>
<tr>
<td>NRC</td>
<td>2.8</td>
<td>3.1</td>
<td>Oct 2004</td>
</tr>
<tr>
<td>CEM</td>
<td>0.4</td>
<td>1.5</td>
<td>Sep 2005</td>
</tr>
<tr>
<td>NMIJ</td>
<td>-1.2</td>
<td>1.3</td>
<td>Oct 2005</td>
</tr>
<tr>
<td>BEV</td>
<td>1.1</td>
<td>3.5</td>
<td>Nov 2005</td>
</tr>
<tr>
<td>INETI</td>
<td>0.8</td>
<td>4.6</td>
<td>Mar 2006</td>
</tr>
<tr>
<td>INMETRO</td>
<td>19</td>
<td>16</td>
<td>Apr 2006</td>
</tr>
<tr>
<td>NMIA</td>
<td>0.9</td>
<td>1.7</td>
<td>May 2006</td>
</tr>
<tr>
<td>VSL</td>
<td>-1.5</td>
<td>1.8</td>
<td>Oct 2006</td>
</tr>
<tr>
<td>KRISS</td>
<td>1.7</td>
<td>1.3</td>
<td>Feb 2008</td>
</tr>
<tr>
<td>LNE (1)</td>
<td>-4.3</td>
<td>1.5</td>
<td>Dec 2007</td>
</tr>
<tr>
<td>LNE (2)</td>
<td>-0.1</td>
<td>0.1</td>
<td>Dec 2007</td>
</tr>
<tr>
<td>NIST (1)</td>
<td>1.5</td>
<td>1.4</td>
<td>Mar 2009</td>
</tr>
<tr>
<td>NIST (2)</td>
<td>-0.8</td>
<td>1.0</td>
<td>Mar 2009</td>
</tr>
<tr>
<td>SMD (1)</td>
<td>0.3</td>
<td>3.3</td>
<td>Nov 2009</td>
</tr>
<tr>
<td>SMD (2)</td>
<td>-0.4</td>
<td>1.3</td>
<td>Nov 2009</td>
</tr>
<tr>
<td>EIM (1)</td>
<td>11.0</td>
<td>17.1</td>
<td>Mar 2010</td>
</tr>
<tr>
<td>EIM (2)</td>
<td>-0.6</td>
<td>2.0</td>
<td>Mar 2010</td>
</tr>
<tr>
<td>NMC, A*STAR (1)</td>
<td>-39.0</td>
<td>6.3</td>
<td>Sep 2010</td>
</tr>
<tr>
<td>NMC, A*STAR (2)</td>
<td>0.4</td>
<td>1.0</td>
<td>Sep 2010</td>
</tr>
<tr>
<td>VNIIM (1)</td>
<td>1.1</td>
<td>2.9</td>
<td>Nov 2010</td>
</tr>
<tr>
<td>VNIIM (2)</td>
<td>-0.1</td>
<td>2.0</td>
<td>Nov 2010</td>
</tr>
<tr>
<td>CMI (1)</td>
<td>14.1</td>
<td>11.1</td>
<td>Feb 2011</td>
</tr>
<tr>
<td>CMI (2)</td>
<td>9.6</td>
<td>10.3</td>
<td>Feb 2011</td>
</tr>
<tr>
<td>CENAM (1)</td>
<td>2.5</td>
<td>1.3</td>
<td>Sep 2011</td>
</tr>
<tr>
<td>CENAM (2)</td>
<td>-0.6</td>
<td>0.7</td>
<td>Sep 2011</td>
</tr>
<tr>
<td>METAS</td>
<td>0.3</td>
<td>1.0</td>
<td>Jan 2012</td>
</tr>
<tr>
<td>MSL (1)</td>
<td>-2.9</td>
<td>6.4</td>
<td>Apr 2011</td>
</tr>
<tr>
<td>MSL (2)</td>
<td>2.5</td>
<td>4.0</td>
<td>Apr 2011</td>
</tr>
<tr>
<td>NIM (1)</td>
<td>0.9</td>
<td>3.3</td>
<td>Nov 2013</td>
</tr>
<tr>
<td>NIM (2)</td>
<td>-0.2</td>
<td>0.9</td>
<td>Nov 2013</td>
</tr>
<tr>
<td>INM(RO)</td>
<td>3.3</td>
<td>2.6</td>
<td>Jun 2014</td>
</tr>
</tbody>
</table>

x_i: result of measurement carried out by laboratory i expressed as the difference from the BIPM value

u_i: combined standard uncertainty of x_i

(1) initial result
(2) final result following technical improvements during the comparison
Key comparison SIM.EM.BIPM-K10.b

MEASURAND : DC voltage, Josephson standards
NOMINAL VALUE : 10 V

SIM.EM.BIPM-K10.b is a bilateral key comparison between NIST and NRC conducted from August 13 to August 17, 2007.

\(d_{\text{NIST-NRC}} \): reported difference between NIST CJVS (Compact Josephson Voltage Standard) and NRC JVS

\(U_{\text{NIST-NRC}} \): expanded uncertainty \((k = 2)\) of \(d_{\text{NIST-NRC}} \)

\(d_{\text{NIST-NRC}} = -0.28 \text{ nV} \)
\(U_{\text{NIST-NRC}} = 2.07 \text{ nV} \)

Key comparison SIM.EM.BIPM-K10.b.1

MEASURAND : DC voltage, Josephson standards
NOMINAL VALUE : 10 V

SIM.EM.BIPM-K10.b.1 is a bilateral key comparison between INMETRO and NIST conducted in June 2009.

\(d_{\text{INMETRO-NIST}} \): reported difference between INMETRO JVS and NIST CJVS

\(u_{\text{INMETRO-NIST}} \): combined standard uncertainty of \(d_{\text{INMETRO-NIST}} \)

\(d_{\text{INMETRO-NIST}} = 0.54 \text{ nV} \)
\(u_{\text{INMETRO-NIST}} = 1.48 \text{ nV} \)
Key comparison BIPM.EM-K10.b

MEASURAND: DC voltage, Josephson standards
NOMINAL VALUE: 10 V

Key comparison reference value: the BIPM value.
Since 2004, its standard uncertainty has been evaluated to be typically 0.04 nV and is included in the u_i's values.

The degree of equivalence of each laboratory with respect to the reference value is given by a pair of terms: $D_i = x_i$ and its expanded uncertainty ($k = 2$), $U_i = 2u_i$, both expressed in nV.

When required, the degree of equivalence between two laboratories i and j can be computed by two terms: $D_{ij} = D_i - D_j = (x_i - x_j)$ and its expanded uncertainty ($k = 2$), U_{ij}, both expressed in nV.

$U_{ij} = 2\left[u_i^2 + u_j^2 - 2\text{cov}(i,j)\right]^{1/2}$, where $\text{cov}(i,j)$ is the estimated covariance that takes into account the correlation introduced by the BIPM measurements.

Linking SIM.EM.BIPM-K10.b to BIPM.EM-K10.b

The degree of equivalence of NIST with respect to the reference value is given by a pair of terms: $D_{\text{NIST}} = (d_{\text{NIST-NRC}} + D_{\text{NRC}})$ and its expanded uncertainty ($k = 2$), U_{NIST}, both expressed in nV.

$U_{\text{NIST}} = \left(U_{\text{NIST-NRC}}^2 + U_{\text{NRC}}^2\right)^{1/2}$.

No pair-wise degrees of equivalence involving NIST have been explicitely computed.

Linking SIM.EM.BIPM-K10.b.1 to BIPM.EM-K10.b

The degree of equivalence of INMETRO with respect to the reference value is given by a pair of terms: $D_{\text{INMETRO}} = (d_{\text{INMETRO-NIST}} + D_{\text{NIST}})$ and its expanded uncertainty ($k = 2$), U_{INMETRO}, both expressed in nV.

$U_{\text{INMETRO}} = 2\left[u_{\text{INMETRO-NIST}}^2 + (U_{\text{NIST}}/2)^2\right]^{1/2}$. The values taken for NIST are the most recent ones (2009).

No pair-wise degrees of equivalence involving INMETRO have been explicitely computed.
BIPM.EM-K10.b, SIM.EM.BIPM-K10.b and SIM.EM.BIPM-K10.b.1

DC voltage, Josephson standards, 10 V
Matrix of equivalence

<table>
<thead>
<tr>
<th>Lab i</th>
<th>D_i / nV</th>
<th>U_i / nV</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNE*</td>
<td>-0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>PTB</td>
<td>-0.3</td>
<td>1.0</td>
</tr>
<tr>
<td>SP</td>
<td>1.4</td>
<td>2.4</td>
</tr>
<tr>
<td>SMU</td>
<td>14</td>
<td>22</td>
</tr>
<tr>
<td>NPL</td>
<td>-1.5</td>
<td>4.4</td>
</tr>
<tr>
<td>NRC</td>
<td>2.8</td>
<td>6.2</td>
</tr>
<tr>
<td>CEM</td>
<td>0.4</td>
<td>3.0</td>
</tr>
<tr>
<td>NMIJ</td>
<td>-1.2</td>
<td>2.6</td>
</tr>
<tr>
<td>BEV</td>
<td>1.1</td>
<td>7.0</td>
</tr>
<tr>
<td>INETI</td>
<td>0.8</td>
<td>9.2</td>
</tr>
<tr>
<td>INMETRO</td>
<td>19</td>
<td>32</td>
</tr>
<tr>
<td>NMIA</td>
<td>0.9</td>
<td>3.4</td>
</tr>
<tr>
<td>VSL</td>
<td>-1.5</td>
<td>3.6</td>
</tr>
<tr>
<td>KRISS</td>
<td>1.7</td>
<td>2.6</td>
</tr>
<tr>
<td>NIST* (2009)</td>
<td>-0.8</td>
<td>1.9</td>
</tr>
<tr>
<td>SMD*</td>
<td>-0.4</td>
<td>2.7</td>
</tr>
<tr>
<td>EIM*</td>
<td>-0.6</td>
<td>4.0</td>
</tr>
<tr>
<td>NMC, ASTAR</td>
<td>0.4</td>
<td>1.9</td>
</tr>
<tr>
<td>VNIIM*</td>
<td>-0.1</td>
<td>4.1</td>
</tr>
<tr>
<td>CMI*</td>
<td>9.6</td>
<td>20.6</td>
</tr>
<tr>
<td>CENAM*</td>
<td>-0.6</td>
<td>1.3</td>
</tr>
<tr>
<td>METAS</td>
<td>0.3</td>
<td>2.0</td>
</tr>
<tr>
<td>MSL*</td>
<td>2.5</td>
<td>8.0</td>
</tr>
<tr>
<td>NIM*</td>
<td>-0.2</td>
<td>1.8</td>
</tr>
<tr>
<td>INM*</td>
<td>-0.2</td>
<td>1.8</td>
</tr>
<tr>
<td>INM(RO)</td>
<td>3.3</td>
<td>5.2</td>
</tr>
</tbody>
</table>

Only the most recent comparison is retained

* The degrees of equivalence are computed using the final result following technical improvements in the comparison setup
BIPM.EM-K10.b, SIM.EM.BIPM-K10.b and K10.b.1 10 V Josephson standards
Degrees of equivalence [D_i and its expanded uncertainty ($k = 2$), U_i]

Red diamonds: participants in BIPM.EM-K10.b
Green triangle: participant in SIM.EM.BIPM-K10.b
Blue circle: participant in SIM.EM.BIPM-K10.b.1

$U_{LNE} = 0.2$ nV

The BIPM key comparison database, March 2015